Use of BHQplusTM Probes to Optimize Multiplex Competitive qRT-PCR in Diagnostics

Dr. James C. Willey

Chief Medical Advisor Accugenomics, Inc.

Professor, Medicine and Pathology University of Toledo College of Medicine

Dr. Willey has equity interest in Accugenomics, Inc., Wilmington, NC Acknowledgements: Funding from CA138397, CA132806, HL108016

Outline

□ Competitive qRT-PCR

- Advantages in discovery and diagnostics
- Applications in diagnostic tests for infectious microbes

Multiplex competitive qRT-PCR Test Design*

- Multiplex pre-amplification with mixture of internal standards
- Second round amplification with BHQplus probes

□ Applications in diagnostics

- Lung cancer diagnostic test (LCDT)
 - Diagnosis of Formalin Fixed Paraffin Embedded (FFPE) samples
- Viral Hemorrhagic Septicemia (VHS) in fish test.

*Multiplex competitive qRT-PCR technology and the LCDT are protected by approved and/or pending patents licensed to Accugenomics, Inc.

Advantages of Competitive qRT-PCR in Diagnostics

- □ PCR each target native template (NT) in competition with a known number of respective synthetic internal standard (IS) molecules.
 - □ NT and IS compete for same primers

Experiment Set-up

- Mix each sample with a known concentration of IS
 - This fixes the concentration of transcript target native template (NT) in sample relative to its respective IS template.
- Aliquot sample/IS mixture into each well containing PCR reagents and primers
- □ Primers will amplify the NT and IS in competition.

□ Advantages

- □ Provides absolute quantification without need for external standard curve.
- Controls for interfering substances and false negatives

Applications: Use of Synthetic Competitive Internal Standards In Diagnostics

Examples in Commercial Diagnostics

- FDA-approved tests for <u>infectious microbes</u>
 - e.g., Roche COBAS® Ampliscreen HIV-1 Test
- A <u>single analyte (HIV-1 gene)</u> is measured relative to a known number of synthetic internal standard molecules

Applications: Use of Synthetic Competitive Internal Standards In Diagnostics

- Challenge: Many transcript abundance based tests require measurement of at least <u>two analytes</u>:
 - At least one reference gene and respective internal standard
 - At least one target gene and respective internal standard
- □ <u>Solutions:</u>
 - Use a mixture of synthetic internal standards (MIS)
 - Accugenomics, Inc. patents, e.g. U.S. No. 7,527,930)
 - Multiplex competitive qRT-PCR

□ **<u>Challenge</u>**: Most lung cancer biopsies are small and degraded

- Fine needle aspirate provides very small samples
- Formalin fixation and paraffin embedding (FFPE) for cytomorphologic evaluation damages RNA and DNA, reduces RT and PCR efficiency 100-fold

□ <u>Solutions:</u>

- 1st round multiplex of sample with MIS to conserve sample/amplify signal
- 2nd round PCR with single primer pair and NT and IS BHQplus probes

OUTLINE OF TEST DEVELOPMENT APPROACH

Develop standardized two color fluorometric assays for

- □ Four gene Lung Cancer Diagnostic Test (LCDT):
 - E2F1, MYC, CDKN1A, ACTB (Warner, Journal of Molecular Diagnostics, 5, 16-183, 2003; Yeo, PlosOne, 9, 2014)
 - Fish Viral Hemorrhagic Septicemia Virus (Pierce, PlosOne, 8, 2013)

□ Prepare reagents

- Synthetic internal standard (IS) for each gene
- □ Mixture of Internal Standards (MIS).
- □ FAM probe for each NT and Quasar670 probe for each IS
- **Conduct Analytical Validation Experiments**
- Evaluate optimized assay in diagnostic samples.

DIGITAL PCR QUANTIFICATION OF SYNTHETIC INTERNAL STANDARDS (60-80 BP)

LIMITING DILUTION

 Nine replicates at 10 dilution points (40, 20, 10, 7, 4, 2, 1, 0.7, 0.4, 0.1 molecules/µl).

- ✓ Internal standard molecule concentrations were accurate.
- Primers for each gene amplified a single molecule.
- ✓ Primers had 100% efficiency.

TWO COLOR FLUOROMETRIC ASSAY Development

-SEQUENCE-SPECIFIC FAM PROBE for NT

-SEQUENCE-SPECIFIC QUASAR PROBE FOR INTERNAL STANDARD (IS)

- ► IS designed with four to six bases different (red N) from NT (green N).
- NT probe homologous to NT sequence labeled with FAM fluor.
- IS probe homologous to IS sequence labeled with Quasar670 fluor.
- NT and IS compete for same primers and amplify with same efficiency
- NT amount quantified as NT (FAM) threshold cycle (Ct)– IS (Quasar670) threshold cycle (Ct).

Analytical Validation: Linearity

Observed compared to expected E2F1values measured in dilution series samples by two-color fluorometric assay

▶ E2F1

- linearity graphs (A, C, E)
- amplification plots of (B, D, F).
- (A, B), dilution of external standards mixture (ESM, 1/1 mixture of NT/IS)
 - 10⁻¹¹ M through 10⁻¹⁷ M
- (C, D), NT dilution relative to constant IS
 - from 1/1 NT/IS (10⁻¹²M) to 1/80 (NT/IS)
- (E, F), IS dilution relative to constant NT
 from 1/1 NT/IS (10⁻¹³M) to 1/80 (IS/NT)

Summary

 Measurement of sample relative to two internal standard mixtures covers nearly 8-logs₁₀

ANALYTICAL VALIDATION: PRECISION/SENSITIVITY

- Low imprecision (CV < 10%) over five orders of magnitude and.
- CV <30% down to <100 molecules
- Reliable detection of as few as 10 molecules.

ACTB			
1:1 Dilution	Expected NT	Average	CV
10 ⁻¹¹ <u>M</u>	600000	6780000	0.09
10 ⁻¹² <u>M</u>	600000	671000	0.02
10 ⁻¹³ <u>M</u>	60000	62600	0.05
10 ⁻¹⁴ <u>M</u>	6000	5880	0.04
10 ⁻¹⁵ M	600	577	0.04
10 ⁻¹⁶ M	60	61	0.42
10 ⁻¹⁷ M	6	9	1.06
Average of C	CV from 10 ⁻¹¹ M	to 10 ⁻¹⁶ <u>M</u>	0.11
Average of C	CV from 10 ⁻¹¹ <u>M</u>	to 10 ⁻¹⁷ <u>M</u>	0.25

PRECISION -SERIALLY DILUTED NT RELATIVE TO IS

NT Dilution	Expected NT	Average	CV
NT 1/1	600000	600000	0
NT 1/2	300000	317000	0.09
NT 1/3	200000	217000	0.16
NT 1/4	150000	156000	0.11
NT 1/5	120000	124000	0.10
NT 1/6	100000	99700	0.13
NT 1/7	85700	87400	0.15
NT 1/8	75000	71300	0.14
NT 1/9	66700	67400	0.14
NT 1/10	60000	61000	0.14
Average from 1	/1 to 1/20 dilution		0.12
NT 1/12	50000	48000	0.19
NT 1/14	42900	37300	0.19
NT 1/16	37500	31900	0.16
NT 1/18	33300	30600	0.15
NT 1/20	30000	27400	0.19
Average from 1	/1 to 1/20 dilution		0.14
NT 1/24	25000	22500	0.20
NT 1/28	21400	19100	0.22
NT 1/32	18800	16600	0.23
NT 1/36	16700	14600	0.31
NT 1/40	15000	12100	0.31
Average from 1/1 to 1/40 dilution			0.17
NT 1/48	12500	10200	0.25
NT 1/56	10700	8000	0.34
NT 1/64	9380	6800	0.34
NT 1/72	8330	5700	0.35
NT 1/80	7500	3600	0.45
Average from 1	/1 to 1/80 dilution		0.20

- CV amount four replicates at each dilution was < 10%.
- As dilution increases, increasing CV and slight deviation of slope from 1.0

Calculation of Transcript Abundance

Quantify the copy number for each gene NT in a cDNA Sample

- Calculate [NT Cq IS Cq] for the unknown sample
- Multiply 2^(-delta Cq) x input IS copies in reaction = NT copy

Normalize Target Gene to Loading Control Gene (e.g. ACTB)

- Each Target Gene NT value normalized to the ACTB loading control gene NT value
- Final value: Target Gene NT molecules/10⁶ ACTB molecules

Analytical Validation: Robustness Internal standards control for interfering substances (e.g. EDTA)

NT/ IS Plots (ACTB) 0mM ~ 2.8mM 2.8mM ~ 3.6mM

- False negative prevention
- Accurate GX measurements

ANALYTICAL VALIDATION: ROBUSTNESS

EXTERNAL STANDARDS MIXTURE (ESM) CONTROLS FOR VARIATION IN FLUOR SIGNAL OR CO SELECTION

- ESM contains known 1:1 concentration of each synthetic NT and IS
- Same ESM used in each experiment.
- ESM corrects for variation in experimental conditions, including:
 - Fluorescence specific activity (S.A.) (i.e., [labeled probe]/[total probe])
 - S.A. may vary between experiments due to freeze thaw, lot differences
 - Cq selection; software may be affected by experimental conditions.

✤ Sample [NT Cq – IS Cq] values corrected relative to ESM [NT Cq – IS Cq] values.

- A. Effect of diluting labeled probe with unlabeled probe on MYC measurement
- B. Correction with ESM controls for variation resulting from instability or intensity differences of two fluors.

Yeo et al, PlosOne, 9, 2014)

Correction for Variation in Fluor/Cq

Quantify the copy number for each gene NT in a cDNA Sample

- Calculate [NT Cq IS Cq] for the unknown sample
- Calculate average [NT Cq IS Cq]ESM of two concentrations of ESM
- Calculate the corrected delta Cq as: [NT Cq IS Cq]Sample [NT Cq -IS Cq]ESM
- Multiply 2^(-corrected delta Cq) x input IS copies in reaction = NT copy

Normalize Target Gene to Loading Control Gene (e.g. ACTB)

- Each Target Gene NT value normalized to the ACTB loading control gene NT value
- Final value: Target Gene NT molecules/10⁶ ACTB molecules

Summary of Test Development

- Synthetic Internal Standard for each gene
 - Controls for interfering substances in PCR, prevents false negatives
- Mixture of Internal Standards (MIS) (Accugenomics, Inc.)
 - Controls for pipetting variation
- BHQplus probes: FAM label for each NT probe, Quasar670 probe for each IS probe
- Analytical Validation
 - For each analyte the new reagents had excellent
 - linearity (R² > 0.99; slope 1.0 ± 0.05)
 - lower detection threshold (< 10 molecules)
 - Imprecision (CV < 10% > 100 molecules)
- External Standard Mixture (ESM)
 - Controls for inter-experimental variation including
 - Lot-to-lot variation in fluorometric probe intensity
 - Experimental variation in automatic cycle threshold selection

LCDT analysis of FFPE Samples

Opportunity:

- Large archives of formalin-fixed paraffinembedded (FFPE) samples from subjects with known outcome and response to specific treatment.
- Fine Needle Aspirate (FNA) is the most common method for diagnosing advanced lung cancer.
- Problem: Poor quality RNA from FFPE and FNA cell block FFPE samples.

□ Challenge:

- Develop RT-PCR methods that reliably measure FFPE samples in which RNA is
 - Contaminated with interfering substances
 - Highly degraded
 - Analytical platform must be capable of analyzing small (<100 bp) PCR products</p>

(dnavision.com)

(www.mghradrounds.org)

LCDT Analysis of Trans-Thoracic FNA Samples

Processing of Fine Needle Aspirate (FNA) Samples

- Most of needle aspirate ejected onto slide for cytomorphologic analysis
 - Cytomorphologic diagnosis is 75-85% accurate.
- Cells remaining in needle washed into FFPE solution for cell block
- <u>Opportunity</u>: Augment cytomorphologic diagnosis accuracy with molecular analysis.
- <u>Challenge</u>: Reliably measure DNA or RNA targets in small, degraded samples.
- Solution: Multiplex-competitive RT-qPCR in two rounds of amplification

TWO COLOR FLUOROMETRIC ASSAYS

-Two rounds of PCR

EXPERIMENT SET-UP IN 96- WELL PLATE

- 20 samples: each mixed with aliquot of ISM, preamplified, and diluted 1,000-fold
- Measure each gene relative to known number of IS molecules within ISM
 - Measure four genes/sample
 - Measure each gene in ESM at 10⁻¹³ M and 10⁻¹⁴M

ACTB

Myc

E2F1

CDKN1A

ACTB

Myc

E2F1

CDKN1A

No template control (control for false positives)

Sample 1

- ✤ cDNA
- ✤ ISM
 - 600,000 molecules ACTB
 IS
 - ♦ 60,000 molecules MYC IS
 - ✤ 6,000 molecules E2F1 IS
 - ✤ 6,000 molecules p21 IS
- Sequence specific Probes
 - ✤ FAM probe for NT
 - QUASAR probe for IS
- ✤ Buffer
- dNTPs
- Taq enzyme

LCDT PERFORMANCE

- LCDT for surgical FFPE optimal cut-off value had 90% specificity and 90% sensitivity.
- Receiver Operator Characteristic (ROC) area under the curve (AUC) was
 0.93 (confidence interval of 0.82-1.04)
- P-value 0.0061 for stratification malignant from non-malignant

LCDT PERFORMANCE

(A, Square: Surgical FFPE, Round: FNA FFPE)

- > p-value of t-test for correct classification (Benign or Malignant) was **0.0009**.
- LCDT optimal cut-off value had 92.9% specificity and 75% sensitivity.
- Receiver Operator Characteristic (ROC) area under the curve (AUC) was
 0.87 (confidence interval of 0.74 to 0.99).

FFPE SAMPLE CHARACTERISTICS

A) Surgical FFPE samples

B) FNA FFPE samples

No bump at A260 & No smooth line

Poor FNA sample plot correlates with

- RNA yield <150 ng</p>
- Low cDNA yield following RT
- Failure of E2F1 measurement
- Higher CV & outlier measurements

FFPE RNA EXTRACTION & REVERSE TRANSCRIPTION Low FFPE RNA Yield: Need to Maximize Signal

Establish :

- Optimal RNA extraction method
- Optimal Reverse transcription conditions
- Multiplex 2-round PCR

COMPARISON OF REVERSE TRANSCRIPTION (RT) BY PRIMING METHOD

ACTB RT Comparison GSP vs RH

- 660-fold increase in yield of ACTB cDNA with gene specific primer (GSP) compared to random hexamer (RH).
- RT contained 1µg RNA from surgical FFPE sample SM1, SM2, or SB1.

LCDT CLINICAL VALIDATION PLAN

LCDT test must be validated clinically in a prospective trial

- Plan to assess hundreds of transthoracic FNA cell block FFPE samples
 - Cytomorphologic analysis
 - LCDT analysis
- Compare sensitivity, specificity

Assess ability of LCDT to augment accuracy of cytomorphology

QUANTIFICATION OF FISH VIRAL HEMORRHAGIC SEPTICEMIA VIRUS (VHSV) WITH TWO-COLOR FLUOROMETRIC MULTIPLEX COMPETITIVE REAL-TIME PCR ASSAY

PIERCE ET ALL, PLOS ONE 8, 2013

Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens.

▶ There is need for faster, more accurate diagnostic test.

We developed a test using

- fish actb1 gene as a loading control
- Internal standards for VHSv N-gene and actb1 gene
- **FAM** probe for VHSv and actb1 NT
- Quasar670 probe for each IS

Results demonstrate

- high signal-to analyte response (slope = 1.006)
- linear dynamic range spans seven orders of magnitude (R² = 0.99)

Conclusion

This new VHSv assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics

BHOph

VHSV TEST APPLICATION

□ In preliminary studies, VHSv test threshold associated with fish symptoms/disease was identified.

This threshold value will be evaluated in a larger study

AccuGenomics

Summary

For more robust measurement in highly degraded FFPE and FNA samples:

- Use competitive template Mixtures of Internal Standards (MIS) from Accugenomics, Inc. in combination with sequence-specific fluorlabeled hydrolysis probes from Biosearch Technologies, Inc.
 - Control for interfering substances
 Prevent false negative results
 Fnable implementation on the communication on the c
 - **Enable** implementation on the commonly available real-time PCR thermocycler devices.
 - □ Enable use of short PCR products (60-80bp)
 - Reduce chance of a break in the RNA between the sequence regions primed for PCR.

AccuGenomics, Inc.

1410 Commonwealth Drive

Wilmington, NC 28403

Tel 910 3326522

www.accugenomics.com

AccuGenomics Inc.

ACKNOWLEDGEMENTS

Lab members:

- Erin L. Crawford (MS)
- Thomas M. Blomquist (MD/PhD)
- Lauren M. Stanoszek (MD PhD student)
- Jiyoun Yeo (PhD student)
- Xiaolu Zhang (PhD student)
- Rachel E. Dannemiller (BS)

- o Jill Zyrek, MD
- Luis E. De Las Casas, MD
- Bradley J. Austermiller, MS
- Test development supported by CA138397 and CA132806
- Tests licensed to Accugenomics, Inc., Wilmington, NC

Thank you!

