BHs Efficiently Quench a Wide Variety of Fluorophores Including IR Dyes, Lanthanides and Ru Complexes

Mary Katherine Johansson, Matthew Lyttle, Timothy Carter, Daren Dick and Ron Cook
Biosearch Technologies, Inc. 81 Digital Drive Novato, CA 94949

Overview

We report on:

1. The mechanisms by which Black Hole Quenchers, BHQs, stop fluorescence

All Reporter-BHQ pairs investigated make profluorescent probes with high signal/background ratios.

BHs Quench Lanthanide Luminescence

Background on Lanthanides
- Atomic emission involving transitions between orbitals.
- Lanthanide luminescence is long-lived (ms).
- Forster Resonance Energy Transfer (FRET) which uses time as a filter to eliminate background signal.
- Tb(III), Eu(III), Sm(III), Dy(III) are all luminescent lanthanides
- Lanthanides are poor absorbers and need to be sensitized

These probes were prepared using the lanthanide reporter: DTPA(In/Carboxyl). The synthesis in Ref. 2 was modified.

BHs Quench Squaraine Fluorescence

Squaraine:COOH was prepared via a modification of Ref. 3 and coupled to an amino-terminated oligo.

The following suggest that there is significant quenching via ground state complex formation:
- High signal/background despite minimal overlap between BHQ-abs and squaraine emission
- Changes in probe absorption spectrum with addition of complement.

BHs Quench Ru(bpy)_3 Luminescence

Background
- When Ru(bpy)_3 absorbs light at 450 nm, there is a metal to ligand charge transfer (MLCT).
- Emission occurs around 500-550 nm
- Ru(bpy)_3 complexes are known to have long excited state lifetimes (ca. 1 μs).
- Therefore, optical gating (using time as a filter) should be possible to reduce background fluorescence.

Experimental

Sequences used:
- APC-F: CGAA-TCA-CCC-TGC-CA-G-AC-TCC-G-3
- APC-R: 5’-ATG-CCC-TCC-ATG-CCA-TTC-GG-3

Hybridization assays were done with complement that has 3 extra T bases on each end.

References

For more information on BHs or other Biosearch products, please visit booth 117 or our website www.biosearchtech.com.