The specificity and sensitivity of real-time PCR has revolutionized the fields of haplotyping, pathogen detection, and gene expression quantification. In each of these applications, the amplifying target sequence is revealed through a fluorescent-labeled probe. A series of fluorophores, collectively known as CAL Fluor™ dyes, is presented for incorporation into these oligonucleotide probes. With emission maxima ranging from 522 nm through 636 nm, these dyes are ideal for multiplexing applications where minimal cross-talk is desired. This capability is demonstrated by simultaneously amplifying four different genomic DNA targets in a quadruplex assay. CAL Fluor™ probes also incorporating Black Hole Quenchers™ exhibit large signal to noise ratios and thus produce amplification traces with early Ct values. These dyes function in a variety of probe designs, including dual-labeled 5' exo-sequencing probes, Molecular Beacons™, and Scorpions™. Finally, CAL Fluor™ dyes are compatible with the range of real-time PCR instruments including the ABI 7500™, the Rotor-Gene 3000™, and the Bio-Rad iCycler™, among others.

Real-Time PCR Performance Across the Spectrum

Linear 5' exo-sequencing, incorporating either a CAL Fluor™ dye or FAM, target a telomerase reverse-transcriptase gene in a singleplex assay. Quasar 670™, a dye with emission in the far red is also included.

Each reporter type was quenched using a Black Hole Quencher™, and the probe sequence was kept identical.

Amplification traces were generated using a Rotor-Gene 3000™, and document a four-fold dilution series of human genomic DNA. Serial dilutions cross the threshold at an interval of two cycles, with six replicates per dilution.

CAL Fluor™ dyes perform with superior detection compared to fluorescein (FAM), demonstrated by earlier Ct values.

Absorption and emission spectra are shown for each unquenched reporter when linked to a T10 oligonucleotide. Blue traces are the absorption spectra and red traces are the emission spectra.

Quadruplex Assay Incorporating CAL Fluor™ BHQ™ Beacons

A quadruplex assay was designed and optimized by Bio-Rad Laboratories to detect the following human genomic DNA targets: a-tubulin, IL-1B, GAPDH, and Factor VIII. Here we modify this assay to incorporate CAL Fluor™ reporters as well as Black Hole Quenchers™. All multiplexing results were obtained using a Rotor-Gene 3000™.

CAL Fluor™ Compatibility with Variety of Real-Time PCR Probe Designs

BD QZyme™ Assay showing CAL Fluor™ Orange 560 Amplification Traces

Molecular Beacon Amplifications using CAL Fluor™ Orange 560

Scorpion™ Amplifications using CAL Fluor™ Orange 560

BD QZyme™ Assay Mechanism

5' Primer containing inactive DNAzyme

The sense strand is synthesized containing active DNAzyme

The DNAzyme sense strand binds substrate & catalyzes cleavage.

Conclusions:

- CAL Fluor™ dyes offer superior detection to FAM in singleplex assays.
- These fluorophores can be successfully employed as multiplexing reporters.
- As versatile fluorophores, they can be incorporated into a variety of real-time PCR probe designs.
- CAL Fluor™ dyes are compatible with the range of quantitative PCR instruments.

CAL Fluor™ Compatibility with Range of Real-Time PCR Instruments

CAL Fluor™ Red 610 Amplification Generated using the ABI 7700

CAL Fluor™ Orange 560 Amplifications Generated using the ABI 7700

CAL Fluor™ Gold 540 and CAL Fluor™ Orange 560 Amplifications Generated using the Cepheid SmartCycler™

CAL Fluor™ Red 610 Amplifications Generated using the Bio-Rad iCycler™

CAL Fluor™ Orange 560 Amplifications Generated using the Cepheid SmartCycler™

Acknowledgments:

We would like to gratefully acknowledge Bio-Rad Laboratories for quadruplex assay design and optimization, Dale LeVeque, Bio-Source for supplying the Rotor-Gene 3000 necessary for real-time PCR, Bob Larsen, BD Biosciences Clontech for his assistance in performing the QZyme™ assay, and for providing the figure of the QZyme™ mechanism, David Whitlegore, Delt for supplying the Scorpion™ amplification image, Cassandra Kelly, Wadsworth Center, NYSDOH for providing the ABI 7500 amplification image, Mike Jones for supplying the Stratagene MX 3000P amplification image, and Amin Dehserie, USA for providing the Cepheid SmartCycler amplification image. These individuals also provided invaluable guidance in the sophisticated field of real-time PCR.

Bio-Rad multiplexing protocol outlined in Bio-Rad Tech Note 3079